Preloading & Vertical drains (VD)

Currently practiced to improve very compressible (soft) soils

1. Preloading
2. Vertical drains (VD): sand & prefabricated drains, installation, constitutive material
3. Design of vertical drains networks
4. Vertical drains project in Tunisia
5. Control and follow up of VD projects

Preloading

- Saturated compressible soil: low bearing capacity
- Embankment load: very simple
- Increase undrained shear strength (C_u), partial primary consolidation
- Prediction from UC triaxial test
- Reduction of settlement
- Time constraint (vertical consolidation too long)
Principle of preloading

\[P_0 : \text{real projected foundation} \]
\[P_1 : \text{allowable loading} \]

\[C^1_u = C^0_u + U(C^f_u - C^0_u) \]

Preloading Limitation:
Staged construction: soft clays & (or) large height embankment, delayed consolidation

Real need: accelerate primary consolidation

The use of vertical drains: horizontal consolidation much more effective for reducing time consolidation

Too reduced drainage path & bigger permeability \((k_h > k_v)\) of drain material
Vertical Drains
associated with preloading

- Sand Drains: may contribute in settlement reduction
- **better option for depth**
- Geodrains = Prefabricated Vertical Drains (PVD): rapid installation & higher drainage properties
- **Limited depth (Equipment)**

Focus: Drains installation, designing drains
Main criteria: *Spacing between drains*
networks, case histories: projects accomplished

Sand drains
Drain efficiency

- **Constitutive material**: drained coarse sand
Obeying to *filter condition* which depends on the gradation curve of the initial soil to improve.
Grain size distribution
- **Installation method**
Sand drains

- **Efficiency**: ensuring drainage

 Good choice of grain size

- **Installation**: it sometimes **needs** substitution of initial soil *(Several procedures)*

- **Filter condition** *(Drain)*

 grain size distribution of soil to consolidate

Filter condition: experiments

- **Earth dams** *(Terzaghi)*:
- **Cohesive material** containing a minimum of 15% clay

 No clogging of a filter $D_{15} = 0.1$ mm.

- **Purely frictional medium**:

 $\frac{(D_{15})_{\text{filter}}}{(D_{85})_{\text{soil}}} = 9$

- **Kérisel** : complementary condition (form of grain size curve)

- **D_{100}** : Maximum diameter of grains filter

- **Particles of diameter D**:
- **Validity of filter conditions (Terzaghi)**:

 Laboratory experiment *(Bertram, 1940)*

 $\frac{D_{100}(\text{filter})}{D_{100}(\text{soil})} < 4^{0.5} - \frac{D_{d}(\text{filter})}{D_{d}(\text{soil})}$
As conclusion:

- **Sand drain** has a limited duration of life.
 - risk of clogging by surrounding soil:

- **Sand Drain « well installed »**:

 Works during all primary consolidation of initial soil.

Method of capped casing with recoverable tip, Magnan (1983).
Prefabricated Vertical Drains (PVD)

- **Origin**: geo-composites
- **Performances to attain**:
 - Power full drainage
 - Role of filter & prevents fines transportation of soil to improve.

- **Steps of installation**

 Installation effect: disturbance of initial soil

PVD’s installation

![Diagram of PVD installation]

Installation of card board drains, Magnan (1983).
Shapes of shoe used for PVD embedment, Magnan (1983).

PVD Installation Effects

1) Smear and disturbance: soil displaced during installation of drain (penetration).
 * Disturbance of soil around the drain
 * Shear strains and displacement
 * Increase of total stresses and pore pressure

 Drain performance is affected.

2) Well resistance: relates the degree of horizontal consolidation with drain’s length.

 Horizontal consolidation decreases with depth
Case histories (experienced projects)

<table>
<thead>
<tr>
<th>Rate of settlement</th>
<th>Mandrel</th>
<th>Smeared zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast</td>
<td>Small area</td>
<td>Reduced</td>
</tr>
<tr>
<td>Slow</td>
<td>Large area</td>
<td>Large</td>
</tr>
</tbody>
</table>

Soil Improvement Techniques, MB 15

Design of vertical drains: acceleration of consolidation

1) Barron’s Theory (1948): unit cell model:

Equivalent diameter: \(D_c \) (drains regular network or mesh)

Assumptions:
- Horizontal drainage (one dimensional consolidation):
- Constant vertical stress (applied load)
- Equal vertical strain: non-uniform vertical stress.

\[
\frac{\partial u}{\partial t} = C_h \left[\left(\frac{\partial^2 u}{\partial r^2} \right) + \frac{1}{r} \frac{\partial u}{\partial r} \right] \quad u: \text{excess pore pressure}
\]

Soil Improvement Techniques, MB 16
Horizontal consolidation

Coefficient of horizontal of consolidation:

\[C_h = \frac{k_h E_{soil}}{\gamma_w} \quad \text{with} \quad 1 \leq \frac{C_h}{C_v} \leq 5 \]

Time factor:

\[T_h = \frac{C_v t}{D_v} \]

Charts:

\[U_h = f(T_h,n) \]

\[n = \frac{D_v}{d} \]

\(d \) Drain’s diameter (equivalent for PVD)

Design: needed time to reach a given horizontal consolidation rate?

\(n \); \(C_r \) and \(D_v \): Data (Parameters)

Methodology applicable for all types of vertical drains

Carillo’s Theory (1942): same framework

3D consolidation \((C_h \text{ and } C_v)\)

Combined solutions of Terzaghi & Barron:

\[
1 - U = \left[1 - U_h\right]\left[1 - U_v\right]
\]

Charts (three)

\(U_h \) and \(U_v \):

Point A: draw vertical line

\(U \): global degree of consolidation

\(C_h \) and \(t \): data

Point B: Choice of \(U \)

Draw horizontal

Diameter of drain and Diameter of influence, Fix the type of mesh

Spacing between drains

Soil Improvement Techniques, MB
Horizontal consolidation chart, Barron (1947).

3D consolidation

Example:

With $U_a = 30\%$ and $U_b = 60\%$ one has a degree of consolidation $U = 80\%$.

Equation of Carillo:

$$(1 - U) = (1 - U_a)(1 - U_b)$$
Design of Prefabricated Vertical Drains

(Hansbo, 1979)

\[U_h = 1 - \exp\left(\frac{-8T_h}{F}\right) \]

\[F = F(n) + F_s + F_r \]

- Barron
- Smear
- Well resistance

\[U = f(T_h, n) \quad : \quad U_h \text{ et } n \quad T_h \]

To calculate t
Designing PVD (1)

- **Equivalent diameter of drain**
 \[d_w = \frac{a + b}{2} \]

- (Hansbo, 1979):
 \[F = F(n) + F_s + F_r \]
 \[U_h = 1 - \exp\left(\frac{-8T_h}{F}\right) \]

\[F(n) = \ln\left[\frac{D_s}{d_w}\right] - \frac{3}{4} \]

Smear effect (disturbance during installation):
\[F_r = \frac{k_s}{k_h} - 1 \cdot \ln\left(\frac{d}{d_w}\right) \]

- Diameter of disturbed zone around the drain
 \[d_s \]

- Horizontal permeability of soil in disturbed zone
 \[k_s \]

- Horizontal permeability in undisturbed soil
 \[k_h \]

Designing PVD (2)

Well-resistance effect: Limited discharge capacity of drain

\[F_r = \pi (L - z) \frac{k_h}{q_w} \]

Drainage occurs at **one end drain**: \(L = \text{Twice length of drain} \)

Drainage occurs at **both ends**: \(L = \text{length of drain} \)

Discharge capacity of the drain at hydraulic gradient of 1: \(q_w \)

Distance from the drainage end of the drain: \(Z \)

Time to obtain a given degree of consolidation:
\[t = \left(\frac{D^2}{8C_h}\right) \left(F(n) + F_s + F_r\right) \ln\left(\frac{1}{1 - U_h}\right) \]

Coefficient of horizontal consolidation:
\[C_h = \frac{k_h}{k_s} C_v \]

Ratio
\[\frac{k_h}{k_s} \]

Use charts of Rixner et al (1986)